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A simplex algorithm useful in the search for the mathematical representation of the class struc­
ture is described. The use of this algorithm in combination with an appropriate pattern recogni­
tion classification method is discussed from the point of view of its application in chemistry. 

----~ --------------------------

The simplex procedure was proposed in 1947 by Dantzig1 as a computational method 
of linear programming and it was mainly applied by economists. In the sixties, 
the efficient sequential simplex procedure2 and its modification 3 were developed 
and then successfully used in many different optimization problems including those of 
experimental chemistry4-10. In 1977, the utility, efficacy and reliability of the simpli­
cial methods as well as their robustness in a stochastic environment were additionally 
increased by the ,Super Modified Simplex (SMS) procedurell . The simplex procedure 
is also convenient for the adjusting of optimum coefficients of I11athematical cqua­
tions including those which approximate the behaviour of chemical systems6

. Such 
an application has been recently described12 - 13 also for the pattern recognition 
classification of chemical objects by means of learning machine method15

. This 
"simplex pattern recognition" was successfully used for adjusting of the optimum 
set of coefficients (weight vector) of linear discriminant function even in the case 
of linearly inseparable classes of the objects . This "simplex pattern recognition" 
thus enables more general application of the conceptually simple learning machine 
method. 

In this paper ~e describe a new use of the simplex approach in pattern recognition 
analysis. By means of this approach we search for 'an appropriate mathematical 
representation of the class structure, the class being defined as a set of similar objects, 
in our case of chemical ones. The structure of the class can thus be accounted for as 
a type of relations between the relevant variables (features) characterizing the objects 
of the class . The search for the mathematical representation is , naturally, the sounder 
the better is the classification of the objects into the classes . For classification of che­
mical objects, the pattern recognition was successfully applied in the last decade16 ,17 . 

There ae patern recognition methods working during classification with the kllOW-
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Mathematical Representation !,f Chemical Class Structure 59 

ledge of the class(es) structure'(s) or without. The 'former case can be illustrated 
e.g. by the Wold's SIMCA method18

•
19

, the latter case by Ol,lr pattern recognition 
classification method developed recently20. Our method measures the similarity 
of objects by means of the Euclidean distance in a transformed and normalized 
space without considering any structural regularities during the classification process . 
Therefore, after the objects were classified into the appropriate classes, a search 
for the mathematical representation of the structures of the classes should follow 
in order to generalize the behaviour of similar objects in the class . 

In this introduction a simplex algorithm suitable for such a search is described 
in the form used in the following paper21 for a pattern recognition analysis of catalytic 
activity of some transition metals in ethane hydrogenolysis. Methodologically, our 
simplex approach uses some advantages of the SMS-method in an automated manner 
with the possibility of the operator's interaction in decision steps of the algorithm. 

CALCULATIONS 

All computations were carried out on Hewlett- Packard 9825 computer. The program was made 
for automatic performation of the procedure with displaying of the best simplex response found 
during the given iteration cycle together with the best and second best responses of the last itera­
tive step of this cycle. This enables to check the convergency rate of the automatic iteration 
process and affect it interactively e.g. by changing the expansion (contraction) coefficient. The 
operator's interaction is necessary in the step Al and E (the formulation of different initial vec­
tors) and in the step F (the suggestion of an additional type of mathematical representation). 

Simplex Procedure 

Geometrically, the d-dimensional simplex (d-simplex) represents a convex polygon defined by 
d -I- 1 vertices. These vertices are linearly independent vectors v1• v2 • .... vd +1. The simplest 
case is a 2-dimensional simplex which can be represented by a triangle (Fig. 1). Three-dimensional 
simplex is evidently a tetrahedron in 3-dimensional space. 

In optimization procedure. the dimensionality of the simplex equals the number of the vari­
ables VI (i = 1. 2 •. .. • d) and the set of the vectors Vj (j = 1. 2 •. . .• d + 1) to the number of ex­
periments. The points VB. vS and VW in Fig. 1 corresponding to the positional vectors Vi' v2 

and v3 thus represent the initial situation of the optimization procedure (the initial simplex So) 
for experiments with two variables. Nevertheless. the multivariate situations (d ~ 4) beyond 
the graphical representation are very frequent in the modelling of real systems. In these cases 
the starting situation of the simplex optimization procedure can be given by the tabulated data 
Vij only (Table I). The data Vlj for real systems have to fulfill certain specific constraints. Thus 
the constraint of nonnegativity (vij ;;;; 0) was formulated22 for the "classical" economic problems 
of optimum planning. For the optimization of phySical and chemical experiments the constraints 
are naturally formed by the extreme values of the individual variables (v\"ln ~ Vij ~ crax). 
Contrarily, for the optimization of mathematical equations where V lj are the coefficients of the 
equations no special constraints are necessary. 

A) Generation o/initial simpltx. In our algorithm the initial simplex So is generated automati­
cally in the following way: 
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60 Strouf, Fusek: 

Ai) Choose arbitrari ly the initial vector v l ' 

A2) Derivative linearly independent vectors vi, V3 • ... , Vd + 1 of the simplex So so that: 

Vij = vii for i * j - 1 

and 

Vij = Vi I + q for i = j - 1 , 

where 
d 

q = (L vrtfd)1/2 . 10- 1 . 
i=1 

The initial simplex is thus generated in a way similar to the generation in the "simplex pattern 
l'ecognition,,12, but in the latter case q is an arbitrarily selected constant. 

B) Responses at the vertices of the simplex. In the optimization of experiments the responses 
rj in Table I are the 'results of the experiments Vj' The optimization is carried out by the estima-
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FIG. 1 

Movement of Two-Dimensional Simplex 
vN1 is a new vector (vertex of the simplex) 

for different coefficients Q( ; i = J for the con­
traction coefficient --IX < 1, i = 2 for the 
contract ion coefficient Q( < 1 and i = 3 
for the expansion coefficient Q( > 1. 
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tion of Vj with the maximum fj in maximization problems and with the minimum rj in the 
minimization ones. The optimization of mathematical equations is principally a procedure sear­
ching for the optimum set of coefficients of a given equation. i.e. the set which gives the closest 
fit of calculated and experimental values. The fit can be checked. e.g .• by least squares criterion6 

which is used also here for the optimization the of coefficients of the polynomial approximations. 

81) Estimate the responses rj at the vertices vJ of the initial simplex So as the sums of squared 
differences between calculated values yik and known values h. k = 1.2, ... , K. where K is the 
number of the known values 

IC 

I'j =J=l(YJk - h)2. 

E.g. for the linear polynom, the responses Yj are calculated according to: 

K d 

Yj = k~/i~l(XkiVij) -ykf. 

where the values of the parameters Xk(d - 1 ) are estimated experimentally and the values XlII are 
equal (0 one, the coefficient Vdj thus being an additive constant of the given linear polynomial 
equation. 

B2) Order the vertices vW, VB and v S with the worst. the best and the second best responses, 
respectively. 

C) Moving o/the simplex. The simplest movement is the rel1ection2 of vW through the centre 
of the hyperplane (centroid vc). the hyperplane being defined by the remaining vertices after 
the deletion of vW. The result of this reflection is a reflected vertex yR. The reflection with ex­
expansion or contraction3 represents the modification yielding a new vertex yN instead of yR. 

The super modification11 is ased also on the expanded (contracted) reflection. but in this case 
the location of v N is estimated by means of the second degree curve constructed from the res­
ponses yW, rC and rR . The analysis of the curves in all possible situations in maximization as well 
as minimization problems is discussed in the original paperl1. In our minimization problem 
only that part of the analysis dealing with the "concavity up" case is used. In all remaining cases 
the simple expansion (contraction) scheme3 •6 of modified sequential simplex is followed. 

Cl) Delete vW and calculate the centroid v
C from the remaining Vj according to: 

d 

v
C 

= j~l vj /d. 

C2) Calculate the response ,.c at the centroid vc. 

C3) Reflect vW to obtain yR 

C4) Calculate the response rR at the vertex yR. 

C5) Form a new vertex v N according to the relation: 

vN = VC + IX(VC _ vw) • 

where IX is an expansion (contraction) coefficient adjusted from the relations of responses yW. rB. r
S 

and rC. 
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62 Strouf, Fusek : 

a) If rW + rR - 2yC > 0, then relation between vectors and the corresponding responses 
is approximated by a parabolic function with a minimum (Fig. 2) (the "concave up" case in the 
SMS-procedureI1 ). By the derivation of this function the expansion coefficient is then calculated 
as: 

b) Otherwise, if rW + rR - 2rc ~ 0, then the following scheme is used: 

1) If rR < rB, then the expansion coefficient 0: = 1·9 is chosen. 

2) If rS < rR < ,w, then the contraction coefficient 0: = 0·5 is used. 

3) If rR < ,w, then th~' negative contraction coefficient 0: '"""" --0·5 is accepted. 

4) Finally, if rB < rR < rS is valid, then no expansion (contraction) is carried out (0: = 1) and 
yN == yR. 

C6) Substitute VW in the initial simplex So by the new vertex v N forming thus the new initial 
simplex S I and carry out the cycle BI-C6 until following stopping criterion is fulfilled. 

e7) Stop if the vectors Vj or/and the responses 'j do not change in at least two subsequent 
cycles. The resulting vector is then accounted for as the best one yB of the initial simplex So 
generated from the first arbitrary VI' 

D) Simp/ex iteratioll. After the cyclic procedure A-C is stopped according to the above 
criterion, the resulting vB is accounted for automatically as a new initial vector vi . The new 
initial simplex So is generated from vi by the A-part ofthc algorithm and the search for the vector 
with the best response vB, is carried out in the cycle B-C. Thi s itcration process is made until 
the minimum sums of squared differences of I'B are practically identical in at least two subsequ\!Dt, 
iterations. The resulting vector is the best one for the simplices generated from the set of i!lit,i~l 
vectors being derived from the first initial arbitrary vector VI ' 

E) Illteractive search for true optimum. To decrease the possibility of finding a false minimum, 
the procedure A-D is repeated with a Ilew arbitrary vector vi dramatically different from the 

vR 

Flo. 2 

Estimation of the Position of New Vector vN 

in the Case of Responses Relation rW + rR_ 
- 2rc > 0 ("Concave up" case l1 ) 

------- - _._ .. _._ .. _- - _ .••. _ - - ---- -
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Mathematical Representation of Chemical Class Structure 63 

precedent initial vector Vt. The best vector found by the procedure is compared with the best 
ones from previous simplex iterations. When mutually very different initial vectors give approxi­
mately the same values of the best responses rD

, then the corresponding vH* is proposed to be 
a nearly optimum one for a given type of equation. 

F) Search for appropriate type oj equation. The coefficients of various tested mathematical 
equations (e .g . the polynomial equations of different degrees21 ) are optimized by means of the 
above procedure A-E. The the resulting best vectors of the tested equations are ordered ac­
cording to the values of their responses rB and, finally, the equation with the set of coefficients 
corresponding to the minimum best response is accounted for as the closest mathematical ap-
proximation among those treated in the study under consideration . . 

DISCUSSION 

The principal task of chemistry is the extraction of information about the sought 
property (r in Table I) from thc set of chemical data, here Vi] (Table I). The modelling 
is a very efficient tool for the analysis of chemical systems characterized by such 
data23

• Many real chemical systcms belong to multivariate systems with high value 
of d for Vi (Table I). Moreover, for numerous objects of the system the experiments 
(here v]) are cumulated by means of very efficient automated measurement equip­
ments in a dramatically accelerating rate. For such complex chemical systems the 
modelling based on pattern recognition approach has been recently pTopoEed24• 

This modelling consists of a) classification of the objects of the system into classes 
according to the similarity of objects with respect to a sought property, the similarity 
being estimated by an analysis of multivariate data 20, b) mathematical representation 
of the structure of the classes21

, c) estimation of the level of the sought property25 
and d) determination of intrinsic dimensionality 26 of the system by the dimensionality 
reduction and feature selection. 

The simplex method described in this paper seems to be a useful computational 
method for the above parts b) and c), as shown by the modelling of the catalytic 
activity of transition metals in the hydrogenolysis of ethane21

,25. The presented 
simplex method can be gencrally applied for the optimization of coefficients of djf­
fercnt mathematical equations; in our modelling we tested polynomial cquations 21

,25 

which are used also here for the simplex algorithm demonstration. 
The main aim of the mathematical representation of chemical class structures 

is twofold: First, the information about structural homogcneity of the system, this 
information being necessary for the sound evaluation of the system behaviour. Se­
condly, the possibility ofa rapid classification of new object with the sought unknown 
property by a very simple calculation. 
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